# Potable Reuse in California: Lessons Learned and the Path Forward

Brian Pecson, Ph.D., P.E. Trussell Technologies

Congresswoman Michelle Lujan Grisham's
Water Innovation Summit
Albuquerque, NM, October 14, 2014



- De facto reuse
- Indirect potable reuse
- Direct potable reuse



#### De facto potable reuse







## Indirect Potable Reuse (IPR)



Source Control



WWTP



Advanced Water Treatment



Aquifer Injection / Spreading



Reservoir Augmentation



Distribution

#### Direct Potable Reuse (DPR)





Buffer (ESB)



Flange-to-flange



#### HISTORICAL PERSPECTIVE

# Current CA Potable Reuse Projects

- All are IPR projects doing groundwater recharge
- 7 existing projects



The "Granddaddy" in the West LA's Montebello Forebay Recharge Project

#### Groundwater Recharge: Surface Spreading



#### Groundwater Recharge: Surface Spreading



Biological Treatment

Granular Media Filtration

Disinfection

Soil Aquifer Treatment







# **Spreading Basins** Recreational/Area Rose Hills









- Operating since 1962
- Surface spreading
  - 560 acres
  - -~44 MGD
- Extensive testing
  - Epidemiology
  - Trace organics
- Expansion now underway





#### Groundwater Recharge: Subsurface Injection



# Orange County GWRS

Advanced process train

Biological Treatment

Membrane Filtration

Reverse Osmosis

UV/H<sub>2</sub>O<sub>2</sub>



- Removes all pathogens
- Removes all organics (TOC<sub>avg</sub> ~ 0.1 mg/L)

## **GWRS**



## **GWRS**



# Orange County GWRS

- Preceded by Water Factory 21 (1978-2005)
- GWRS started operations in 2008
- Presently 70 mgd; undergoing a 30 mgd expansion
- Two recharge projects: direct injection and surface spreading

# Other Groundwater Recharge Projects





# Other Groundwater Recharge Projects





# Other Groundwater Recharge Projects



#### California IPR Overview

| Facility                            | Technology            | Production<br>(MGD) | Production<br>(AF/year) |
|-------------------------------------|-----------------------|---------------------|-------------------------|
| Montebello Forebay                  | Spreading             | 44.6                | 50,000                  |
| Groundwater<br>Replenishment System | Spreading / Injection | 100                 | 112,000                 |
| West Coast Basin Barrier            | Injection             | 22.6                | 25,315                  |
| Chino Basin                         | Spreading             | 18.7                | 21,000                  |
| Alamitos Barrier                    | Injection             | 8                   | 8,970                   |
| Dominguez Gap Barrier               | Injection             | 5                   | 5,600                   |
| Totals                              |                       | ~200                | ~220,000                |

#### California IPR: Lessons Learned

- Successful history of IPR for over 50 years
- Multiple treatments and reuse strategies for public health protection
  - Advanced treatment with injection
  - Tertiary treatment with soil aquifer treatment
- Offsets more than 200 MGD
- Potential to provide up to 25% of drinking water needs in Southern California

#### REGULATORY PERSPECTIVE

# Groundwater Recharge

Regulatory efforts began in 1986

- Principles
  - Make good water source
  - Achieve low level of risk
  - Focus on pathogens (acute contaminants)
  - Use multiple-barrier approach
  - Do not degrade existing sources

# Groundwater Recharge

- By 1994, multiple options: spreading & injection
- Pathogen control
  - 12-log virus
  - 10-log Cryptosporidium and Giardia







- Chemical control
  - TOC as surrogate for CECs, unregulated chemicals
  - Recharge volumes limited by organics removal
- Requires time to detect and respond to failures

# Groundwater Recharge

- Regulations finalized in June 2013
- Permitted schemes



# Future Potable Reuse Regulations

- Senate Bill 918 important driver for additional regulations
- Set deadlines for potable reuse criteria
  - Groundwater recharge: end of 2013
  - Reservoir augmentation: end of 2016
- Requires Division of Drinking Water to inform legislature on feasibility of DPR (end 2016)

#### **DIRECT POTABLE REUSE**

#### Structure of **Direct** Potable Reuse



#### **DPR Drivers**

- High reliability
- Less expensive
- Lower energy & greenhouse gas production
- Water supplies decreasing/demand increasing
- Environmental buffers not available in all locations
- Technologically feasible

## Role of environmental buffer in IPR







- Contaminant removal
- Dilution / blending

- Storage capacity
- Time to detect & respond to failures



#### Role of environmental buffer in IPR







- Contaminant removal
- Dilution / blending

- Storage capacity
- Time to detect & respond to failures

How do maintain these protections without an environmental buffer?

What are the key issues?

# DPR Research and Next Steps

- DPR Expert Panel
  - Evaluate research, state of science
  - Provide technical guidance for CA regulators
- California DPR Initiative
  - WateReuse: \$6M effort to develop data for DDW
- Key WRRF research studies:
  - 11-02: public health criteria/treatment evaluation
  - Others: enhanced monitoring, engineered storage buffers, communication plans

#### DPR of Reliable Potable Reuse

City of San Diego

Biological Treatment Ozone/ BAC Membrane Filtration Reverse Osmosis UV H<sub>2</sub>O<sub>2</sub>

- Treatment
  - Redundancy
  - Robustness
- Monitoring



#### Conclusions

- Potable reuse can be done safely
- Multiple solutions should be sought
  - Non-potable reuse
  - Indirect potable reuse
  - Direct potable reuse
- Need to ensure public health protection
- Public acceptance is critical

# Acknowledgements

- Rhodes Trussell
- Shane Trussell



# End

